Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation

نویسندگان

  • Todd E. Hudson
  • Michael S. Landy
چکیده

A coordinate system is composed of an encoding, defining the dimensions of the space, and an origin. We examine the coordinate encoding used to update motor plans during sensory-motor adaptation to center-out reaches. Adaptation is induced using a novel paradigm in which feedback of reach endpoints is perturbed following a sinewave pattern over trials; the perturbed dimensions of the feedback were the axes of a Cartesian coordinate system in one session and a polar coordinate system in another session. For center-out reaches to randomly chosen target locations, reach errors observed at one target will require different corrections at other targets within Cartesian- and polar-coded systems. The sinewave adaptation technique allowed us to simultaneously adapt both dimensions of each coordinate system (x-y, or reach gain and angle), and identify the contributions of each perturbed dimension by adapting each at a distinct temporal frequency. The efficiency of this technique further allowed us to employ perturbations that were a fraction the size normally used, which avoids confounding automatic adaptive processes with deliberate adjustments made in response to obvious experimental manipulations. Subjects independently corrected errors in each coordinate in both sessions, suggesting that the nervous system encodes both a Cartesian- and polar-coordinate-based internal representation for motor adaptation. The gains and phase lags of the adaptive responses are not readily explained by current theories of sensory-motor adaptation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stability Analysis of a Strongly Displacement Time-Delayed Duffing Oscillator Using Multiple Scales Homotopy Perturbation Method

In the present study, some perturbation methods are applied to Duffing equations having a displacement time-delayed variable to study the stability of such systems. Two approaches are considered to analyze Duffing oscillator having a strong delayed variable. The homotopy perturbation method is applied through the frequency analysis and nonlinear frequency is formulated as a function of all the ...

متن کامل

Analytic Solution for Hypersonic Flow Past a Slender Elliptic Cone Using Second-Order Perturbation Approximations

An approximate analytical solution is obtained for hypersonic flow past a slender elliptic cone using second-order perturbation techniques in spherical coordinate systems. The analysis is based on perturbations of hypersonic flow past a circular cone aligned with the free stream, the perturbations stemming from the small cross-section eccentricity. By means of hypersonic approximations for the ...

متن کامل

A Comparison Between Fourier Transform Adomian Decomposition Method and Homotopy Perturbation ethod for Linear and Non-Linear Newell-Whitehead-Segel Equations

In this paper, a comparison among the hybrid of Fourier Transform and AdomianDecomposition Method (FTADM) and Homotopy Perturbation Method (HPM) is investigated.The linear and non-linear Newell-Whitehead-Segel (NWS) equations are solved and the results arecompared with the exact solution. The comparison reveals that for the same number of componentsof recursive sequences, the error of FTADM is ...

متن کامل

Analytic Approach to Investigation of Fluctuation and Frequency of the Oscillators with Odd and Even Nonlinearities

In this paper we examine fluctuation and frequency of the governing equation ofoscillator with odd and even nonlinearities without damping and we present a new efficientmodification of the He’s homotopy perturbation method for this equation. We applied standard andmodified homotopy perturbation method and compare them with the numerical solution (NS), also weapplied He’s Energy balance method (...

متن کامل

Error Recovery by the Use of Sensory Feedback and Reference Measurements for Robotic Assembly

Industrial robots need instrument or parts transport to do which requires coordinate to show the robot’s instrument, parts and body. When investigating the robot location, we are usually interested in measuring its location relative to a reference coordinate system. In this system it is attempted to make the assemble direction smaller by designing the sensor board and making use of an instrumen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Vision Research

دوره 119  شماره 

صفحات  -

تاریخ انتشار 2016